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Abstract. A local-orbital-based ab initio approach to
calculate correlation effects on quasi-particle energies in
insulating solids is presented. The use of localized
Wannier-type Hartree—Fock orbitals allows correlation
effects to be efficiently assessed. First a Green’s function
approach based on exact diagonalization is introduced
and this is combined with an incremental scheme, while
subsequently different levels of perturbative approxima-
tions are derived from the general procedure. With these
methods the band structure of LiF is calculated and
good agreement with experiment is found. By comparing
the different approximations proposed, including the
exact diagonalization procedure, their relative quality is
established.

Key words: Wannier-type localized orbitals — Electron
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1 Introduction

The present work introduces a new scheme for ab initio
band structure calculations including correlation effects.
Up to the present, such calculations are still subject to
immense numerical efforts. A very efficient scheme is
density-functional theory (DFT) [1, 2], which focuses on
the electron density in order to obtain ground-state
properties. In several cases the interpretation of the
single orbital energies, retrieved in the self-consistent
process, as quasi-particle energies also turns out to be
successful. Particular attention has been paid to the local
density approximation (LDA) to DFT, owing to its
numerical feasibility; however, it is found that in
insulating materials the LDA results tend to under-
estimate the band gap [3]. Improvements such as the
GW approximation [4] or the optimized effective
potential method [5] are available. A noteworthy
improvement, using an exact exchange potential, has
been presented by Stddele et al. [6]. Yet all these

procedures rely on special functionals which might not
be improvable in a systematic way.

On the other hand, explicitly wave-function-based
approaches, which are well explored in quantum chem-
istry, use a correlation interaction scheme to incorporate
correlation effects and are hard to apply to solids owing
to high numerical costs. They are, however, system-
atically improvable. Naturally, the first applications to
infinite periodic systems focused on one-dimensional
problems, i.e. polymers. Sun and Bartlett [7], Liegener [8],
Bogar and Ladik [9] and Suhai [10] presented perturba-
tive schemes, while Forner et al. [11] introduced a cou-
pled-cluster method. Abdurahman et al. [12] obtained
correlation corrections from an effective Hamiltonian.

Early proposals for three-dimensional applications
date back to the use of local operators by Horsch et al.
[13]. An ab initio approach based on local Hartree—Fock
(HF) orbitals was introduced by Stoll [14], who set up an
incremental scheme of rapidly decreasing correlation
contributions to the ground-state energy. Gréifenstein
et al. [15, 16] were able to extend this scheme to excita-
tion energies, but using a finite-cluster approximation
this attempt was restricted to the valence bands only
when aiming at covalent semiconductors [17]. Recently,
Tatewaki [18] presented a finite-cluster approximation
for the case of LiF. In order to obtain genuine local HF
orbitals for gap materials, taking into account the entire
infinite system, Shukla et al. [19, 20] developed the
program package WANNIER and also performed
Ground-state correlation calculations [21]. The author
of the present work proposed constructing an ab initio
effective Hamiltonian perturbatively using such local HF
orbitals [12, 22]. Igarashi et al. [23] conceived a local
Green’s function approach, which involves exact diag-
onalization of a model Hamiltonian in a selected sub-
space, and Takahashi and Igarashi [24, 25] applied this
procedure to various open-shell crystals. This procedure
was recently carried over to the ab initio case, where the
use of the aforementioned incremental scheme allowed
the necessary boost in numerical efficiency. Its feasibility
was demonstrated by a modest basis set calculation on
LiH [26].
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In the present work this ab initio Green’s function
scheme is applied to LiF, which is the focus of recent
state-of-the-art band structure calculations [18, 27].
Additionally, various perturbative approximations are
derived from this scheme and the quality of the results is
compared. The work is organized as follows. The
Green’s function approach and its combination with an
incremental scheme are introduced in Sect. 2. Further-
more, perturbative variants are also presented. The re-
sults obtained for LiF are discussed in Sect. 3 and the
conclusions are summarized in Sect. 4.

2 Theory

HF calculations are used as a starting point of many
quantum chemical methods in order to address correla-
tions. For the solid the HF band structure calculation
can nowadays routinely be performed in reciprocal
space, thus exploiting the translational invariance of
periodic systems, for example, using the program
package CRYSTAL [28], however, this results in
extended Bloch states for the one-particle orbitals. The
correlation hole around a quasi-particle, on the other
hand, can be considered to have a fairly local nature [29].
In order to exploit this feature for the sake of feasible
numerical efforts it seems advantageous to formulate the
correlation corrections in terms of localized rather than
extended HF orbitals. In this work the program package
WANNIER, recently developed by Shukla et al. [19]
was employed to obtain localized HF orbitals. This has
been done routinely before [19-21] and is not described
in the present work.

In the localized orbital basis an incremental scheme
can be formulated for a variety of quantities in order to
systematically include an increasing number of correla-
tions. This scheme is applied to the self-energy in real
space as explained in Sect. 2.1. The use of local HF
orbitals allows separate regions characterized by strong,
weak and very weak individual correlation contributions
to the self-energy to be defined. For the strong con-
tributions an exact diagonalization method is used, while
further approximations are adequate for the weak parts.
This approach is guided by the general idea of employing
methods of different accuracy for different classes of
correlation contributions as is efficiently done for mole-
cules [30] as well as in an earlier application to LiH [26].

2.1 A Green’s function approach

A Green’s function approach was introduced by
Igarashi et al. [23] and was applied to a Hubbard-type
model Hamiltonian in several applications [24, 23].
Recently an ab initio calculation was performed for LiH
[26]. In this section the description of the Green’s
function method is repeated. Additionally, several
approximation schemes are introduced in Sect. 2.2.

The starting point of our correlation calculation is
Wannier-type localized HF orbitals, referred to hence-
forth as local HF orbitals. At the HF level, a hole can be
represented as

[Rn) = cra|PuF) , (1)

where cg, destroys one electron in a local occupied HF
orbital which is characterized by its unit cell, R, and its
cell orbital index, n. A similar description holds for the
creation of an electron in a local HF orbital.

The Hamiltonian is partitioned into a zero-order
Hamiltonian and a residual interaction using local HF

orbitals and  introducing compound indices
i=0n,j=Rm:
H=Hy+WwW (2)

Z a iaj (3)
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ijkl
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where F is the Fock operator and the residual
interaction comprises the two-body part of the Coulomb
interaction.

So far the compound indices i = On,j = Rm have
been used. Henceforth the cell vector is made explicit
again. The Green’s function is defined as

Gan(R, 1) = —i{T[a,(0,0)a},(R,1)]) (5)

where 7T is the time-ordering operator and the angled
brackets denote the average over the exact ground state.
By means of a space-time Fourier transform the Green
function can be translated into reciprocal and frequency
space, where it obeys the Dyson equation:

Gun(k, 0) = G (k, )

nm

+ ) Gor(k, ) Zp (k, )G (K, ) (6)
kl

The indices n,m,k and [ are used to denote both
occupied and virtual orbitals. The Dyson equation
(Eq. 6) introduces the self-energy X (k,®), which
contains the correlation effects. GY (k,w) is the HF
propagator

[Go(kv w)];,:: o — Eznz(k) . (7)

As a result of Dyson’s equation the Green function is
then calculated from

Gnm(ka a)) = [CU - F(k) - Z(k, w)];rr]z : (8)

The correlated band structure is given by the poles of the
Green’s function, which are numerically iteratively
retrieved as the zeros of the denominator in Eq. (8).

The self-energy is approximated by decomposition
into a retarded and an advanced part,

Sk, 0) =20 (k, 0) + = (k, 0) (9)
Furthermore, the configuration space is restricted to
single excitations, i.e. three-body interactions.

In the following only the construction of the retarded
self-energy part is given, the case of the advanced part
being analogous. Returning to compound indices in real
space, the indices now contain again both the lattice
vector of the unit cell, the orbital number in this cell and



the spin. Let a,b,c and d and r,s,¢ and u represent oc-
cupied and virtual orbitals, respectively. The space of
two-particle one-hole states (2plh) is spanned by

|r,s,a) = aiaiaa|(I)HF> . (10)
The Hamiltonian is in this basis
[HR}ma"r,S,a, = (r,s,a|lH — Eo|r,s',d")
=T (rs; s )0uar — Fuar (9550 —
— T(sd'; S )3y + Fyp B oy
T (a5 @)y + Fi g
+T(rd';s'a)dg — Fyuu Oy
+ T (sd';7a)d,y — Fry0uwdps -

5;‘&’ 5sr’ )

(11)

The superscript R is used again to refer to the retarded
part, meaning in this case that the matrix H® is set up in
the 2plh space. There is a similar equation for the 2hlp
space. I' is given by
F(rs;ta) = Wista — Wsar - (12)
Here Ej is the HF ground-state energy, while the angled
brackets now indicate the HF average.

Diagonalizing the matrix HR results in the eigenvec-

tors SR and eigenvalues /R, The retarded part of the self-
energy is then constructed as

Z%(Rm)) = Z I'(rs;na)

X [w—HR+i5]

- >

rsa;r's'a’

rsa;r's'a F(F/S,; ma,)

I'(rs; na) Z Sia;q
q

1
(02 +i0) ™

The translational invariance of the solid allows the index
n in Eq. (13) to be confined to the central unit cell 0,
while the index m is in unit cell R which has been made
explicit. In the following the frequency dependence will
also be indicated explicitly. The self-energy in reciprocal
space, as it appears in Eq. (8), can then be obtained as a
Fourier transformation:

0 (ko) =Y MR, 0) .
R

(s’ smad) .

(13)

(14)

In principle, the three-body excitations |r, s, a), |/, s', a’)
taken into account while performing the calculation

1 o i1 K
e e
intra one-cell
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should run over the entire solid. Secondly, Eq. (13) ought
to be evaluated for each lattice vector R as all these terms
are needed in Eq. (14); however, owing to the use of local
HF orbitals, both infinite summations can be rendered
finite. Since the correlation hole around a quasi-particle
is for its major part a rather local quantity, it turns out
that only excitations in the neighborhood of the central
unit cell will considerably contribute to the self-energy, so
the number of relevant three-body excitations is finite.
Secondly, by the same token the parts of the self-energy
with R # 0 will be found to decay rapidly with increasing
distance of R, so again only a finite number of
calculations need to be performed. Yet it might turn
out that still a rather large environment around a quasi
particle is needed and the task of diagonalizing this part
might still exceed computational power. To address this
point, an incremental scheme was introduced by Stoll [14]
for the ground-state energy and was later adapted to the
case of quasi-particle energies by Grifenstein et al. [15,
16]. The idea amounts to breaking up the task of
diagonalizing the Hamiltonian in the full space of
configuration interaction (here, e.g. three-body interac-
tion) into a series of smaller tasks arranged in a
controlled and well-defined way. This has been described
in detail in Ref. [26] and is briefly reviewed in the
following.

The compound indices i = On,i’ = Om, and j = Rm
are used again, while the retardation index of the self-
energy together with the frequency dependence is
suppressed. Let us first look at the on-site part of the
self-energy, i.e. the part with R=0 in Eq. (13). To
calculate the matrix element X;; from Eq. (13), a first
simple approximation is introduced by restricting all
excitations, i.e. all indices r,s,a and ¥,s',a’ in Eq. (13)
to the central unit cell 0. This is sketched in the left
panel of Fig. 1, labeled intra. The figure shows a
certain finite environment of the solid around the
central unit cell and displays by continuous shading
the active cells where excitations are taken into ac-
count. Let us denote the result of this simple proce-
dure by 9. Then, this result can be defined to be
the first of a series of approximations to the exact
result obtained from correlating the entire solid. Since
only excitations in the central cell were allowed, it is
called the intra increment, defined as:
A intra — zii"O )

i’

(15)

The next step is to perform a calculation of the self-
energy where now excitations are allowed in the central

Fig. 1. Each of the three panels shows the
same finite nine-cell part of the infinite solid.
e The active cells are displayed schematically
for an intra cell correlation calculation
(“intra’), a one-cell increment and a two-cell
increment (denoted by “one-cell” and “‘two-
cell”, respectively). As indicated, orbitals i
and i are in the same unit cell
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cell and one additional cell, denoted K in the middle
panel of Fig. 1. Denoting the result of this calculation as
2Ry > the corresponding one-cell increment, labeled I to
mark the use of one additional cell, which gives the effect
of this additional cell K on the self-energy, is defined to
be

ATy, = Zirme — AZP™ (16)
Obviously this procedure can be continued to include
more and more cells. As a last example, the two-cell
increment, labeled 11, indicated on the right of Fig. 1, is
given by

AZIIII’;RKRL = i ReR, — AZII.I.,;RK — AZU R Azlntra
(17)
The self-energy is finally approximated by
Y = Azinra 4 Z AXL, Ry T 2' Z ATl R, T
Rx#R,
(18)

Of course, there are an infinite number of one-cell,
two-cell and higher-order increments; however, as
pointed out earlier, only a limited number of them
need actually to be calculated since with increasing
number of active cells and the distance between them
the respective increments rapidly decay to zero. As the
decrease of the increments can be monitored, the
truncation of the summation (Eq. 18) can be con-
trolled explicitly. All this effort amounts to calculating
what might be called the R =0 part or the on-site
part of the self-energy, i.e.
Y = Zum(0) . (19)
To be specific, increments with cells arranged approxi-
mately as a sphere in a certain range, R, will be
calculated explicitly. Beyond R. individual contribu-
tions are found to basically vanish and only the sum up
to infinity would give a noticeable contribution, well
known as the long-range polarization cloud. As has
been demonstrated in earlier works [15-17, 26], this
part can be well approximated by a continuum
correction. To this end the polarization effect of the
part of the solid outside the sphere that has been taken
into account explicitly so far is taken to be that of a
dielectric continuum and is a constant. So the part of
the sum in Eq. (18) which involves cells With lattice
leading to a constant shift of the bands towards the
Fermi level.

To obtain the on-site part of the self energy Eq. (19),
a series of calculations for as many individual increments
in the sum (Eq. 18) as necessary is performed.

As described in Ref. [26], the self-energy matrices
with R # 0 can be obtained in the same way. Naturally
the same series of increments as in Egs. (15), (16), (17),
and (18) can be calculated for each R # 0, giving rise to
what might be referred to as the nonlocal terms of the
self-energy, by means of the following completely ana-
logous increments:

intra 0
Azinm — 50
I intre
AZZ] Ry — 2ij§RK - Azi’;‘ltrd
AE}‘};R,(R,_ = Zij;RKRL - Azzl'j R,k Azij R, Azl‘mra
5 thra + Z AZU _ 5 Z AZIIJI R, T
Rx#R,

(20)

where orbital i resides in cell 0 and j in cell R. The
simplest increment, the “intra cells” increment is
obtained from a calculation of the self-energy in which
only three-body excitations in the two cells 0 and R,
where the orbitals i and ; reside, are permitted. It is
labeled ZO in the Eq. (20). Higher-order increments are

obtained by allowing more and more cells to be active
and finally Eq. (20) leads to the R-dependent parts of the
self-energy, i.e.

L =ZmR) . (21)

2.2 Perturbative approximations

Up to now it has been shown how the use of local HF
orbitals can allow for an efficient calculation of the self-
energy. However, the numerical effort for the diagona-
lization of the Hamiltonian in the space of three-body
interactions (Eq. 11) is considerable even for a small
number of active cells. Since the diagonalization is the
most expensive step, it sets the overall scaling of the
method and is thus similar to a singles configuration
interaction procedure (SCI). A straightforward imple-
mentation scales with L if the matrix is of size L x L.
For single excitations L scales as V(V — 1)0O = V?0 if V
and O are the numbers of virtual and occupied orbitals
per unit cell, respectively. Since there is no general
reason to assume a strong scaling of the number of
increments and cells per increment to be taken into
account with the number of basis functions per unit cell
or the number of atoms per unit cell, the latter are the
decisive quantities, so the method scales as V00, It is
the same scaling as that of a straightforward SCI.
However, this steep increase in numerical effort with the
size of the basis functions has not prevented large-scale
molecular SCI and even single and doubles configura-
tion interaction calculations, so efficient approximations
to the diagonalization have been devised and could be
used for the present case as well. Another alternative is
presented by perturbative schemes which scale linearly in
L or as V?0. Along with the exact diagonalization
presented so far, perturbative schemes were tested in
addition. They are all derived from the procedure put
forth so far and can be easily accommodated in the
general program package.

A general perturbative approximation is obtained
by skipping the diagonalization of the Hamiltonian
matrix (Eq. 11) and just retaining its diagonal as
eigenvalues. This immediately transforms Eq. (13) for
the retarded part of the self-energy into the second-
order expression
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(22)
where AR are the aforementioned diagonal elements of

the full Hamiltonian (Eq. 11).

IR = Fu 4 Fyy — Fow + U(rs; rs) — T(ra; ra) — T(sa; sa)
:6V+€S_6a+JrA - rb
—Jra+K,, —Jsa+ K, . (23)

In the last line of Eq. (23) the Coulomb and exchange
coeflicients J;; = Wy;;;, and K;; = W;; were used together
with the abbrev1at1on €; = Fj;. The result (Egs. 22, 23) is
well known as the Epstein—Nesbet approximation [31]. It
results from retaining the diagonal of the full Hamilto-
nian in the configuration space. A second point of view
is discussed later. Of course the usual second-order
perturbation theory can be derived from Eq. (22) just by
replacing the diagonal elements (Eq. 23) with the matrix
elements of the Fock matrix only, i.e.

R
Doy = €+ € — €4 .

(24)
Equation (22) together with the ordinary energy
denominator (Eq. 24) yield the self-energy used by
Liegener [8] and Bogar and Ladik [9] in their band
structure calculation of polymers. It has been pointed
out that the difference between Eqs. (23) and (24) can
also be understood in terms of second-order diagrams
[31]. By depicting the second-order self-energy as
obtained with the energy denominator given by
Eq. (24) as a bare second-order diagram, the solution
(Eq. 23) is obtained as a summation of special higher-
order diagrams up to infinite order. This is depicted in
Fig. 2. The left-hand side of Fig. 2 represents a bare
second-order Coulomb contribution to the self-energy
matrix element X, ’) and reads

VVnars Wmars
W+ € — € —€+id
On the right-hand side of the Fig. 2 a Coulomb insertion

has been added with the incoming and outgoing indices
chosen to be identical, giving a contribution

Woars Wiars 7
. rs -
w+e;— € —€ +id

(25)

(26)

m m
\
\
77777777 r o ad T
S
S V) > a
a S r
/N
‘'n n

Fig. 2. Second- and third-order diagrams corresponding to the

contributions (Egs. 25, 26) to the self-energy matrix element Zn’;n
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Adding more and more such insertions and adding all
contributions yields a power series in J,; which can be
written by just adding a —J,, to the bare energy
denominator of Eq. (25). By analogy, the remaining
additional Coulomb and exchange terms can be derived
in the Epstein—Nesbet expression (Eq. 23).

At this stage it is to be noticed that the self-energy is
still frequency-dependent. This means that while iterat-
ing on w in Eq. (8) to find the poles of the Green’s
function, the procedure has to go through all of the in-
crements used in Eqs. (18) and (20) in each step. While
this is practical for the limited number of on-site incre-
ments, it is less feasible for all increments, particularly
those describing the R # 0 part of the self-energy. For-
tunately, there is an elegant solution to the problem by
fixing the frequency so that Eq. (13) or Eq. (22) takes
the second-order form:

1
TR #0) Z I'(rs;na) P — I'(rs;ma) .

(27)

It has been shown in an earlier work [26] that this
particular approximation amounts to calculating an
effective Hamiltonian, which puts the approximation
(Eq. 27) into the light of a well-defined context. Details
of the effective Hamiltonian treatment can be found in
a previous article, where this procedure was applied to
ring systems [22]. Further applications have been done
for polymers [12]. Equation (27) is suitable for a
further discussion of what processes are included in
the three-body-scattering theory. As long as the
conduction bands are considered, the indices n and m
of the retarded self-energy matrix, Z() refer to
particles and Eq. (27) can be represented as second-
order diagrams of the type shown on the left side of
Fig. 2. They clearly represent single excitations. How-
ever, in the case of valence-band calculations the
indices n and m refer to holes and the retarded self-
energy matrix (Eq. 27) is now represented by the two
leftmost diagrams shown in Fig. 3. For m # n the left
diagram applies and displays a double excitation on top
of the single hole coupling directly to the model space.
For m = n the ground-state correction diagram in the
middle of Fig. 3 is obtained. So the direct coupling of

\i n n
,,,,,,,,,,,,,,,,, N
T /S ro /s e

~ | af 4 M S A
\\// a\\// k\\ ) ) /
| It G SO ¥
m m#n m=n

Fig. 3. Diagrams for =) derived from Eq. (27) for the case where
the orbitals n and m refer to holes instead of particles. The two
diagrams to the left show the direct coupling of the double
excitations to the model space and ground-state correlation
corrections, respectively. The diagram on the right gives an
example for the coupling of a double excitation to a single
excitation and has been left unindexed
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the doubles to the model space is included in the
theory. For the conduction bands the advanced part of
the self energy, Z‘E,“jg, given by a formula similar to
Eq. (27) takes the role of these two leftmost doubles
diagrams in Fig. 3. However, since the Hamiltonian is
only diagonalized in the subspace of single excitations,
the coupling of the doubles to the singles is not taken
into account. Since the omission of higher-order
excitations might result in some fortuitous error
cancellation, it would be desirable to know how large
the effect of such excitations are in each case. The
diagram on the right of Fig. 3 exemplifies such a
double excitation which couples to a single excitation.
The coupling of the doubles to the singles is at least
fourth order and can thus be expected to be rather
small, yet to estimate the error incurred by restricting
the matrix (Eq. 11) to the single excitation space, the
following diagonal dressing procedure is adopted. If
the single excitation space is indexed with S and the
double one with D, the procedure up to now can be
symbolized by the eigenvalue problem

HssCs = ACs | (28)

where Hgs is the matrix (Eq. 11) and Cg is an
eigenvector with eigenvalue 1. Taking into account
single and double excitations the problem grows to

Hss Hsp )\ (Cs) _ [ Cs

Hps Hpp /\ Cp Cp
Solving the second line for Cp and inserting the result in
the first line yields an effective Hamiltonian HZ! which
operates entirely in the space of the single excitations but

incorporates the effects of the double excitations as well.
Specifically one obtains:

(29)

Hss — Hsp[Hpp — A]_IHDS} Cs = JCs . (30)

g
The under-braced effective Hamiltonian, HS, depends
on the sought eigenvalue, 4. A perturbative solution can
be constructed as before by retaining only the diagonal
hs and hp of Hsg and Hpp in Eq. (30). Without taking
into account double excitations the eigenvalues 1 would
be identical with the diagonal elements Ag. The solutions
to Eq. (30) can be found iteratively for each state, S, of
single excitations by:

. HspHps
M=ot oy 22 (31)
S S ;h}) _ /Ablslfl
2 =hs (32)
BT =53 (33)

The diagonal elements AST of the matrix Hss then
represent dressed elements incorporating the effects of
double excitations; hence, the name diagonal dressing.
Once they are obtained, the calculation proceeds as
before in the single excitation space. Throughout the
following calculations, only single excitations are taken

into account. The diagonal dressing method is applied
only once for a test calculation to assess the effect of
double excitations.

3 Results and discussion

In this section the theory is applied to LiF. Recent HF
calculations in localized Wannier—type orbitals were
presented by Shukla et al. [20]. To incorporate correla-
tion effects in the band structure, the LDA and the GW
approximation have been applied recently [27] as well
as a finite-cluster approach [18]. In the present work,
localized HF orbitals are calculated as a starting point
for the correlation procedure. This was done using the
program package WANNIER [19]. A [4s3p1d] basis set
was used for the fluorine anion, while a [2s1p] basis set
was used for the lithium cation. While for the lithium
atom this is a polarized single-zeta basis set, for the
cation it constitutes a polarized double-zeta basis. This
point has been carefully studied by Tatewaki [18], who
showed that a [2slp] basis set performs fine in the
present case. The basis sets of Ref. [20, 36] were used
with slight modifications in the exponents of the outer p
orbitals, which were optimized for the solid case using
WANNIER. The same holds for an additional d
function provided for fluorine. The basis set is shown
in Table 1.

All the calculations were done at the experimental
face-centered-cubic lattice constant @ = 3.990 A with
fluorine at the (0,0, 0) position and lithium at (0,0,a/2).

As an analysis of the mechanism of the incremental
scheme, the importance of different increments is con-
sidered. Including or omitting an increment in the band
structure calculation gives insight into the contribution
of this very increment. In the upper part of Table 2 the
contribution of various increments to the correlation
correction of the fundamental gap at the I' point is
presented. All increments belong to the series (Eq. 18) of

Table 1. Basis set for the LiF calculation

F Li
Exponents Coefficients Exponents  Coefficients
(bohr™?) (bohr™?)
Ls 13770.000 0.000877 700.0 0.001421
1589.000 0.009150 220.0 0.003973
327.600 0.048600 70.0 0.016390
91.460 0.169100 20.0 0.089954
30.500 0.370700 5.0 0.315646
11.460 0.416500 1.5 0.494595
4.660 0.131600
2s 19.290 —0.118300 0.5 1.0
4.586 —0.127700
1.387 1.000
3s 0.431 1.000
4s 0.22 1.00
2p 10.56917 0.126452 0.55 1.00
2.19471 0.478100
3p 0.47911 1.00
4p 0.22 1.00
3d 1.54 1.00




Table 2. Individual increments as obtained with the Green’s
function method and their contribution to a narrowing of the
Hartree—Fock (HF) gap in (eV) are depicted in the upper part. The
indices 1, 2 and 3 indicate that the additional cells involved in the
respective increments are within the first, the two first or the three
first coordination spheres, respectively. S refers to one-cell
increments, D to two-cell increments. The intra increment as
obtained from various levels of approximation is analyzed in the
lower part. The lines Green’s, EN, PT and Hr show the results
obtained with the Green’s function method, the Epstein—Nesbet
approximation, perturbation theory and the effective Hamiltonian,
respectively

Closing of the gap

Increment (Green’s) Intra 5.654
S 0.190
S 0.032
S 0.007
D, 0.002
Method (for intra) Green'’s 5.654
EN 5.547
PT 4.984
Heg 3.598

the local part of the self-energy and were calculated
using the Green’s function method implying exact
diagonalization. The intra increment gives by far the
largest individual contribution, reducing the HF gap by
5.65eV. The one-cell increments take into account
excitations spread over the central cell and one addi-
tional cell. They are denoted as S, in Table 2, were n
indicates that the additional cell is chosen from the nth
coordination sphere. Shifting the additional cell from a
first-nearest-neighbor position (S) to a third-nearest one
(S3) decreases the one-cell contribution from 0.190 to
0.007 eV. This tiny contribution is already three orders
of magnitude smaller than the intra increment. Even the
largest two-cell increment, Dy, amounts to only 0.002
eV, which is 2 orders of magnitude smaller than its one-
cell increment counterpart, S;. The rapid decrease of
increment contributions which manifests itself in Table 2
is a consequence of the fairly local character of a
correlation hole around a quasi-particle. It allows the
efficient calculation of the band structure including
major correlation effects, provided local HF orbitals are
used. In fact, all one-cell increments up to third-nearest
neighbors have been taken into account. Similarly, the
“intra cells” increments for the nonlocal part of the
self-energy are taken into account in the same range.
Since their contribution is found to be tiny, they are
calculated perturbatively from an effective Hamiltonian
(Eq. 27).

The numerically most expensive increment is the
(least needed) D; double-cell increment which involves
diagonalizing three unit cells at a time. It requires the
diagonalization of a 10* x 10* matrix and takes some
hours on a standard machine. Since efficient quantum
chemistry molecular program packages diagonalize even
much larger systems than the equivalent of LizF3,
adopting more efficient diagonalization schemes would
also boost the method presented here. Additionally, the
use of point group symmetries would significantly lower
the costs. It can thus be assumed that numerically the
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approach of this work can be made feasible for a range
of interesting crystals.

For the intra increment the results of the different
approximations discussed in Sect. 2.2 are compared in
the lower part of Table 2. The term “Green’s function
method” is used in this context to imply the exact
diagonalization step and the subsequent construction
of the self-energy according to Eq. (13). To obtain the
second order Epstein—Nesbet (EN) results, Eq. (22) was
used together with the energies (Eq. 23), as explained in
Sect 2.2. The term ‘‘perturbation theory” refers to the
use of Eq. (22) with the bare energies (Eq. 24). All these
schemes lead to the final solution by iterating on the
frequency, w. The construction of a second-order effec-
tive Hamiltonian, on the other hand, follows Eq. (27).
Clearly, the latter gives the poorest approximation, as
can be seen by comparing the respective contribution in
line Hegr in Table 2 with the result of the Green’s func-
tion approach. Perturbation theory and the EN for-
mulation yield results in between. In fact, the EN result
is quite close to the result obtained by exact diag-
onalization, yielding an intra increment contribution of
5.547 eV, which differs little from the Green’s function
result of 5.654 e¢V. The same tendancy has been de-
scribed in detail by Reinhardt and Malrieu [31] in their
discussion of correlation contributions to the ground
state of various ring systems. They pointed out that
particle-hole lines in diagrams such as that on the right-
hand side of Fig. 2 diminish the energy denominator via
Eq. (23) and thus enhance the contribution of this dia-
gram, while the opposite holds for particle-particle or
hole-hole lines. It was further concluded that the overall
balance leads the particle-hole contributions to dom-
inate the summation, so the EN approximation yielded
results which were close to nonperturbative ones when
local HF orbitals were employed. Obviously in this work
the same holds for the band structure and it can be ar-
gued in much the same way that there are more possi-
bilities for particle-hole lines than for particle-particle
lines in diagrams such as that on the right-hand side of
Fig. 2. Finally, the effect of double excitations was es-
timated by repeating the calculation for the intra incre-
ment with the Green’s function method while using a
dressed-diagonal constructed from (Eq. 31). It was
found that this leads only to a slight increase of 0.4%
over the bare value of 5.654 eV. At least for the present
system the effect of the doubles can thus be assumed to
be rather small. This finding confirms an earlier, less
approximate, analysis for the case of diamond [17].
Using an effective Hamiltonian and a finite-cluster ap-
proach, increments were calculated in three ways,
namely, taking into account only single excitations in a
strict sense (which is only diagrams of the type shown on
the left of Fig. 2, i.e. only the retarded part of the self
energy in Eq. 9), considering only double excitations
(which means only diagrams such as the two leftmost
ones in Fig. 3, i.e. in the present formulation only the
advanced part of the self-energy in Eq. 9), and including
the coupling between single and double excitations.
It was reported that for diamond the intra increment
of singles only plus doubles only amounts to 0.12136
Hartree, while the full calculation including the coupling
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between singles and doubles (as indicated in the diagram
on the right side of Fig. 3) yields 0.12366 hartree, which
is an increase of just 1.9% .

For the band structure calculation the increments for
the local part of the self-energy (Eq. 18) are calculated
with the Green’s function procedure from Eq. (13). The
nonlocal part gives only a rather small contribution and
its increments which appear in Eq. (20) are obtained
from the perturbative expression (Eq. 27). The final re-
sult is shown in Fig. 4. The upper three valence bands
due to the p orbitals at the fluorine sites as well as the
lowest four conduction bands are depicted. The solid
lines represent the HF result, while the dashed lines give
the result of the correlation calculation. Additionally,
some values of the bands at high symmetry k points are
given in Table 3. The fundamental gap appears at the I’
point. Its HF value of 22.40 eV is by far too large when
compared with experiment. This shortcoming is cor-
rected by taking into account electron correlations. The
calculation of this work leads to a gap of 13.50 eV,
which amounts to a shrinking of the gap of 8.90 eV. This
result compares well with the experimental value of
13.5 eV [32, 33]. Naturally, this should not lead to the
conclusion that the method presented yields results with
such a high accuracy, since there is some uncertainty
in the measurements, some of which suggest a gap of
14.2 eV [34] as well as in the calculations, where the
long-range-polarization part was approximated and
contributes with 0.45 eV to the shrinking of the gap, i.e.
with 5% . But the nice match found is nonetheless
reassuring. A comparison with other ab initio calcula-
tions is shown in Table 4. Tatewaki [18] explored several
approaches, two of which are stated in the table, the
local density function (LDF) procedure and the

Table 3. Energy values (eV) of the upper three valence bands
(vi—v3) and the lower three conduction bands (¢;—c3) at the points
L[b(,5, D], TT0, 0, 0)], X[b(1, 0, 0)], W[b(1, 3, 0)] and K[b(, 3, 0)]

embedded cluster approach, both with correlation cor-
rections (labeled LDF and cluster in Table 4). The HF,
LDA and GW results are taken from Ref. [27]. The
correlated results are in a narrow range from the 13.5 eV
of this work to 14.3 eV given by the GW calculation in
Ref. [27], (except the LDA, which underestimates the
gap with 8.82 eV), and are close to experiment. For the
sake of comparison the gap was recalculated using the

energy/eV

-5 - 1

-15

L T X W K

Fig. 4. Band structure of LiF for selected directions in the first
Brillouin zone between L[b(3,1,Y], T[(0,0,0)], X[b(1,0,0)],
W[b(l,%,O)] and K[b (%,%,0)] (Cartesian coordinates, b = 27"). The
upper three valence bands together with the lowest four conduction
bands are shown as solid and dashed lines for the Hartree—Fock

and the correlated results, respectively

(Cartesian coordinates, b = 271/a). Both the HF results as well as
the correlated ones are given. In the last line the fundamental gap is
stated

L T X W K

HF Corr HF Corr HF Corr HF Corr HF Corr
" -9.30 -2.29 -6.39 0.49 -9.76 -2.90 —8.68 -1.87 -9.16 -2.29
v —6.60 0.17 -6.39 0.49 -7.55 -0.74 —8.68 -1.87 -8.12 —1.30
V3 —6.60 0.17 -6.39 0.49 -7.55 -0.74 -7.27 -0.43 -7.21 -0.34
¢ 20.11 17.75 16.01 13.99 22.88 19.40 23.99 20.43 23.21 19.99
c 25.13 20.11 34.88 31.88 29.27 25.74 23.99 20.43 24.72 20.66
c3 32.87 29.99 34.88 31.88 29.27 25.74 27.17 24.53 29.44 25.96
Gap 22.40 13.50

Table 4. Comparison of values for the band gap and the valence band width from various calculations. The column labels are as explained in
the text. Width refers to the valence band width. Experimental values are also given in the last two columns. All values are in electron volts

This work From Ref. [18] From Ref. [27] Exp

HF Heg Corr LDF Cluster HF LDA GW
Gap 22.40 17.30 13.50 13.9 13.9 21.29 8.82 14.30 13.5% 14.2°
Width 3.37 3.40 2.8 2.7 3.31 3.12 3.61 3.5¢

#From Ref. [32, 33]
®From Ref. [34]
°From Ref. [35]



second-order effective Hamiltonian expression (Eq. 27)
for all increments, i.e. also for the local part of the self-
energy in Eq. (18). It is found to be 17.3 eV as can be
seen from column Hey in Table 4. While this gives a
considerable correlation correction to the HF gap, it
falls short of fully accounting for the narrowing of the
HF gap to 13.5 eV.

Secondly the width of the three upper valence bands
is compared. While the usual tendency to be expected is
a flattening of the bands, in the case of the LiF valence
bands this effect is not pronounced. In the present cal-
culation the HF band width of 3.37 eV basically does
not change, displaying a minute broadening to 3.40 eV.
This again, however, matches with the experimental
width of 3.5 eV [35]. Also, the other works cited in
Table 4 consistently show the same tendency. Tatewaki
observed a slight broadening of his self-consistent-field
value of 2.7 eV (not quoted in the table) to 2.8 eV
obtained with the LDF method. His cluster approach
does not change the width at all, leaving it at 2.7 eV. By
the same token Shirley [27] found a HF width of
3.31 eV, which is somewhat smaller than the correlated
value of his GW result (3.61 eV). So both the tendency
and the magnitude of the valence band width of this
work are consistent with other calculations and with
experiment. Tatewaki [18] also pointed out that there is
a more recent experiment giving a much larger width of
6.1 or even 10.5 eV [32], but argues convincingly that an
enhanced sensitivity is likely to have recorded impurity
effects.

4 Conclusion

In conclusion a localized-orbital-based ab initio scheme
for band structure calculations which is designed to
include correlation effects on top of HF results has been
presented. The procedure starts from localized HF
orbitals and strives to calculate the self-energy matrix.
This task was efficiently split into the calculation of
individual increments arranged in a series of rapidly
decaying contributions. The scheme is flexible and
allows a different treatment for different contributions,
depending on their relative weight. Several perturbative
formulations were retrieved from the Green’s function
scheme and were easily incorporated in the program.
Their respective level of accuracy was found to be close
to earlier findings. The results for LiF match with
experiment and are consistent with other most recent
state-of-the-art methods. Being explicitly orbital-based,
the scheme presented is amenable to systematic im-
provements in a clear manner. This is because the
applied method, i.e. exact diagonalization, is already
exact, so taking into account double excitations, triple
excitations, etc. yields a hierarchy of calculations leading
to full configuration interaction. This, as well as taking
into account larger basis sets and more increments in
principle does not imply changes to the scheme and its
formulas, so one has a clear prescription of how to
proceed. In practice, of course, enlarging the basis set or
taking into account higher-order excitations leads to a
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steep increase in the size of the matrix to be
diagonalized, so further approximations might be
inevitable. An example has been given by means of the
diagonal-dressing technique.
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